Self-collimation in PT -symmetric crystals
نویسندگان
چکیده
منابع مشابه
Self-collimation in PT -symmetric crystals
We predict the self-collimation phenomena (or equivalently, dynamical localization) in two-dimensional PT symmetric complex potentials, where the complex modulation is considered in the transverse, longitudinal, or simultaneously in both directions. Nondiffractive propagation is analytically predicted and further confirmed by numerical integration of a paraxial model. The parameter space is exp...
متن کاملSelf-Collimation in Planar Photonic Crystals
We analyze, in three dimensions, the dispersion properties of dielectric slabs perforated with two-dimensional photonic crystals (PCs) of square symmetry. The band diagrams are calculated for all -vectors in the first Brillouin zone, and not only along the characteristic high-symmetry directions. We have analyzed the equal-frequency contours of the first two bands, and we found that the square ...
متن کاملConditions for self-collimation in three-dimensional photonic crystals.
We introduce the theoretical criterion for achieving three-dimensional self-collimation of light in a photonic crystal. Based on this criterion, we numerically demonstrate a body-center-cubic structure that supports wide-angle self-collimation and is directly compatible with the recently developed holographic fabrication technique. We further show that both bends and beam splitters can be intro...
متن کاملSelf-collimation and beam splitting in low-index photonic crystals
We study self-collimation and beam splitting in low-refractive-index photonic crystals created within chalcogenide glass. We propose a beam splitter structure that allows direct experimental verification of photonic-crystal effects at optical wavelengths in a straightforward and definitive manner. The beam splitter provides angular separation of 90 using a highly compact spatial footprint, thus...
متن کاملQuantum noise and self-sustained radiation of PT-symmetric systems.
The observation that PT-symmetric Hamiltonians can have real-valued energy levels even if they are non-Hermitian has triggered intense activities, with experiments, in particular, focusing on optical systems, where Hermiticity can be broken by absorption and amplification. For classical waves, absorption and amplification are related by time-reversal symmetry. This work shows that microreversib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2017
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.95.053830